The Middelgrunden wind farm by PhD Hans Chr. Sørensen, SPOK ApS

Disposition

- Introduction
- Why wind turbines Copenhagen?
- Planning process
- Conflicts of interest
- Environment Impact Assessment
- Construction
- Basic information and references

SPOK ApS - Hans Chr. Sorensen

Sustainable Projects - Offshore Know-how

Project management RTD projects

- -Ocean wave energy (Wave Dragon)
- -Offshore wind (Middelgrunden 40 MW and Samsø 23 MW)
- -Evaluation
- -EU and DEA projects, Biomass RTD
- -Building process optimization
- Committees
 - -Danish Wind Turbine Owners Association, board
 - -Danish Energy Agency; Grid integration of RES
 - -EU Offshore Wind Concerted Action; Work Package leader
 - -EU Wave Energy Network; Work Package leader

Blegdamsvej 4 DK-2200 Copenhagen N, +45 35360219, consult@spok.dk

Wave Dragon principle

The Wave Dragon is a slack-moored wave energy converter that can be deployed alone or in parks wherever a sufficient wave climate and a water depth of more than 25 m is found.

Why wind turbines Copenhagen?

- Agenda 21
- Take responsibility for power production
- Power to 32.000 households, 3% of the electricity consumption in Copenhagen
- Wind not too bad offshore

Result:

• 8.553 shareholders – mostly single families

Lynetten wind farm 7 x 600 kW

and the

Layout for a wind turbine

The Middelgrunden wind turbines

Planning process

Killer assumptions:

- Wind resource
- Spatial planning
- Visual impact
- Vast deposit

The arc from south

October 2, 2006 SPOK ApS #12

Planning Issues - Principle in DK

Country- and site-specific regulations

- in DK: first overall sites for 150

•

and restrictions

- Visual Impact : Copenhagen 400 years ago

October 2, 2006 SPOK ApS #13

Technical optimisation – visual impact

3 rows in the north part – or one line over the whole length

October 2, 2006 SPOK ApS #14

Visual impact – the defence circles

KØBENHAVIN

. Firstenin latensi lahire Kabapaharan yantir ji mun munuky

a be haven by out it follow tog the detends years of Concentration during town to the Afulate Age.

Visual Impact – two alternatives

TTTTTT

11 4 1

20 turbines in a curved line

Visual Impact

- Distance to shore (<45km)
- Farm and turbine layout
- Marking lights

Copenhagen today, Middelgrunden 40 MW 5 km away

October 2, 2006 SPOK ApS #17

- Deposit for waste for more than 100 years
- In1900-ies harbour sludge (Hg from mirrors and industry)
- I 1985 the discover of the sludge disappears
- General conclusion: don't move more than
 necessary

Waste deposit

Po s itio n	Prøve dy bde	Lag tykk els e	Glø de tab	Bly	Krom	Kobber	Zink	Kvik sølv
Nr.	cm	cm	% af TS mg/kg TS					
1.1Mx1	30+80	0-88	25,8			1 40	89	3,7
2.1M5	210	178-245	1,2					0,58
3								
4.2M1	20	0-33	2,3		46	42		
4.2Mx2	70+120	54-135	1,6	30	_		•	0,43
4.3Mx1	30+80	20-118	1,7	32	45			
5.2Mx2	70+120	56-152	3,2	26				0,43
6.1M1	20	0-30	0,9	31				
6.3M1	10	0-29	1,3			23		
7								
8.1M2	70	48-88	2,6	44				0,58
8.2Mx2	60+110	35 - 1 30	1,8			20		0,49
9 - 12								
13.0Mx1	13.2:10/13.3:20	0-22 / 0-41	1,5	150		1 000	140	48
14.0Mx1	14.1:10/14.2:10	0-27 / 0-19	1,0				220	
15+16	l Der er ikke foretadet analvser af bundbrøver. idet GI's sedimentbeskrivelse viser at brofilen er naturligt afleiret od den vurderes at være upåvirket.							
17.3M1	10	0-15	0,93	33				
18 - 20								
2.1 Mx1	10+50	0-54	2,02			34		
2.2 M1	25	0-35	6,0	52		35	140	1,0
	Ikke foruren et ¹			< 20	<20	<20	<75	<0,25
Foruren et ¹				20-50	20-50	20-40	75-100	0,25-0,5
Kraftigt forure net ¹				> 50	>50	>40	>100	>0,5
1 Miljøstyrelsens vejledning 1983								

Public project presentation & communication strategies

- Information (passive, although consultation requested)
- Planning participation (involvement in decision making process)
- Financial participation (e.g. share owners)

The public hearings

- Contact to all relevant bodies including NGOs
- June-August 1998 new visualization 20 turbines
- Feasibility acceptable as the turbines increases from 1.5 MW to 2 MW
- July-September 1999 EIA DK & SE
 - Comprehensive analyzes off pollution, sound, water flow, suspension of sediments etc.
 - Geological survey each site for foundation
 - New analyzes of flora, fauna and archaeology

Involvement of local people in the project

<image>

ŝ

Conflicts of interest

- Flow to the Baltic
- Birds
- Sea mammals
- Sedimentation
- Collision risk
- Navigation risk, radar

Cross section Øresund

Cross section foundation

Bortskrabning / afgravning og afretningslag

Environmental Impact -Birds

- Limited experience offshore
 - Dutch near-shore
 - Utgrunden / Yttre Stengrund, SE
 - Tunoe Knob, DK
- * Feeding possibilities more important, but results only valid for wintering eiders

Environmental Impact -Birds

- Potential effects: collision, ousting, barrier
- Parameters:
 - species
 - migratory paths
 - site (distance to shore, water depth, feeding possibilities, natural reef effect, ...)
 - time of day/year
 - weather
 - noise
 - layout (farm/turbines, incl. marking lights)

Environmental Impact -Birds

Ytgrunden SE One million seabirds migrates every season 1) Collision 2) Route 3) Food-searching 4) Darkness/fog

Environmental Impact –Birds

Ytgrunden SE

Barrier effect 1

 Eider migration before and after the establishment of the wind farm

Source

October 2, 2006 SPOK ApS #31

Environmental Impact - Mammals

- Visual impacts?
- Noise & vibration impacts?
- Change of biotope?

Sedimentation

Harbor sludge

Conflicts of Interest

Ships

- Collision risk
- Effects difficult to predict
 - type of ship (cargo)
 - size of ship
- Positive effect?
- * Mitigation measures
 - marking lights (but...)
 - emergency procedures
 - standardized, "reliable"
 risk analyses

Conflicts of Interest

<u>Radar</u>

- Potential problem (e.g. UK/SE): Moving blades causing false signals/disturbance, depending on
 - system (age, GPS, satellite)
 - turbine tower
 - number of turbines
- * No serious problems if exact coordinates of wind turbines are known - unless radar equipment is surrounded by turbines.

The radar prefers massive towers

October 2, 2006 SPOK ApS #35

Marking light requirements

• The difference in visual impact

Environmental Impact Assessment

- Fauna and flora
- Noise
- Sedimentation
- Oil spill
- Special attention during construction

3 phases

- Construction*
 Operational
- 3. Dismantling*
- * temporary effects,
 - sedimentation (flora, fauna)
 - noise/vibrations
 (birds, mammals, fish)
- avoid sensitive periods

Shellfish

October 2, 2006 SPOK ApS #40

Noise and Vibrations

- Airborne Noise
- Underwater noise and vibrations Examples:

Porpoises

Produce pulsed sounds: 2 kHz (perhaps communication)

Echo localization sounds:	13-130 kHz
Fair hearing:	1-150 kHz
Good hearing:	8-30 kHz
Speckled Seals:	
Produce sound:	0,1-40 kHz
Fair hearing:	0,1-60 kHz
Good hearing:	1-50 kHz
Fish:	0-130 kHz

* More studies needed!

Moving sludge is not possible to hide

By two foundations - special attention

TIL

Consideration for failure, oil spill

The submarine cables was of the PEX type (without oil)

The 690V/30kV transformer of the dry type (without oil)

Construction phase

Placing reinforcement

5120

Casting concrete

11 Mar

STREET, STREET

Lower part of towers in place in the dry dock

The dry dock

2000-09-30

Work day and night

Planning of accessibility

10

801

Loo

A rotor on the barge in the Copenhagen harbour

Ready for lifting in place

Cable deployment

Inha

Production from March 2000

Wind Power Supervisor

Park view, Middelgrunden

Conclusions

- EIA must be conducted, careful planning essential
- Environmental concerns:
 - especially birds, but additional studies needed
- Conflicts of interest:
 - radar effects
 - collision risk (ships, low-flying aircraft)
 - fishermen must be compensated
- Social acceptance: Early, active public involvement
- Policies: Varies between different countries and even within specific countries

Sources & References

Sources, e.g.

- EIAs (Danish and Swedish projects, so far)
- EU EIA Directive and amendment http://europa.eu.int/comm/environment/eia/full-legal-text/9711.htm
- NOVEM/Ecofys (Inventory of Policy, Regulations, Administrative Aspects and Current Projects for Offshore Wind Energy in Northern Europe, www.ecofys.nl)
- Two papers from the EWEA special topic conference Brussels, Dec. 2001, session Environment (Stefen Nielsen, DEA and H. C. Sørensen, Karin Hammerlund et al)
- Offshore Wind Farms (Guidance note for EIA in the UK www.mecu.gov.uk), "similar" in DK (www.ens.dk in Danish)
- CA-OWEE Report: www.offshorewindenergy.org

Legal Background (1)

- ESPOO convention
- EIA Environmental Impact Assessment
- ES/EIS Environmental (Impact) Statement
- EU Council Directive 85/337/EEC, June 85
- Amended in Council Directive 97/11/EC, March 1997:

"Article 3

The environmental impact assessment shall identify, describe and assess in an appropriate manner, in the light of each individual case... the direct and indirect effects of a project on the following factors:

- human beings, fauna and flora;
- soil, water, air, climate and the landscape;
- · material assets and the cultural heritage;
- the interaction between the factors mentioned..."

Legal Background (2)

- Regarding installations for the harnessing of wind power for energy production (wind farms) the Member States shall determine whether the project shall be made subject to an assessment through:
 - (a) a case-by-case examination, or
 - (b) thresholds or criteria set by the Member State
- All offshore projects expected to be subjects of EIA
- Alternatives and mitigation measures must be included
- Public:

"Member States shall ensure that any request for development consent and any information gathered... are made available to the public within a reasonable time in order to give the public concerned the opportunity to express an opinion before the development consent is granted."

The cooperative

- Options 50 DKK each shear no refund
 - 4,250 DKK/1,000 kWh/y
 - 600 DKK/y first 6 years
- Full payment of shares starts November 1999
- 30,000 shares reduced to 20,000
- TV spots from February 2000
- Sigurd on the Town Square April 29th 2000
- Visit to building site May 2000 1,600 participants
- Article in *Jyllands Posten* September 17th 2000
- All 40,500 shares sold September 18th 2000

Time table

- EU pre-qualification February August 1999
- Tender turbines, foundations and grid October 1999
- Signing of contract December 1999
- Casting concrete April August 2000
- Work on sea bed June September 2000
- Placing caissons September November 2000
- Placing turbines October December 2000
- Placing grid connection November 2000
- Upstart production December March 2000

Power	40 MW
Hub height	64 meter
Rotor diameter	76 meter
Total height	102 meter
Foundation depth	4 to 8 meter
Foundation weight (dry)	1,800 tons
Wind speed at 50-m height	7.2 m/s
Power output	89/100 GWh/y
Distance to shore	3.5 km

Middelgrunden Wind Farm 40 MW Final costs = Budget

The total investment in the project	MEUR
Wind turbines	26.11
Foundations including changes after the tender to reduce the working period	9.92
Grid connection, offshore	4.56
Design, advice and planning	2.15
Wind turbine cooperative	0.54
Other costs	1.61
Total	44.9

Danish energy mix

Electricity Production by Type of Producer

Source: www.ens.dk